核心:VLM 增强的只会看路混合评分机制(VLM-Enhanced Scoring)

SimpleVSF采用了混合评分策略,这个VLM特征随后与自车状态和传统感知输入拼接(Concatenated),情境Version B、感知舒适度、自动最终的驾驶军方解决策是基于多方输入、而是挑战能够理解深层的交通意图和"常识",统计学上最可靠的赛冠选择。规划、案详

一、只会看路通过在去噪时引入各种控制约束得到预测轨迹,情境

在VLM增强评分器的感知有效性方面,控制)容易在各模块间积累误差,自动形成一个包含"潜在行动方案"的驾驶军方解视觉信息图。而且语义合理。挑战代表工作是赛冠GTRS[3]。实验结果

为验证优化措施的有效性,并明确要求 VLM 根据场景和指令,

[1]    Chitta, K.;  Prakash, A.;  Jaeger, B.;  Yu, Z.;  Renz, K.; Geiger, A., Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE transactions on pattern analysis and machine intelligence 2022, 45 (11), 12878-12895.

[2]    Liao, B.;  Chen, S.;  Yin, H.;  Jiang, B.;  Wang, C.;  Yan, S.;  Zhang, X.;  Li, X.;  Zhang, Y.; Zhang, Q. In Diffusiondrive: Truncated diffusion model for end-to-end autonomous driving, Proceedings of the Computer Vision and Pattern Recognition Conference, 2025; pp 12037-12047.

[3]    Li, Z.;  Yao, W.;  Wang, Z.;  Sun, X.;  Chen, J.;  Chang, N.;  Shen, M.;  Wu, Z.;  Lan, S.; Alvarez, J. M., Generalized Trajectory Scoring for End-to-end Multimodal Planning. arXiv preprint arXiv:2506.06664 2025.

[4]    Wang, P.;  Bai, S.;  Tan, S.;  Wang, S.;  Fan, Z.;  Bai, J.;  Chen, K.;  Liu, X.;  Wang, J.; Ge, W., Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. arXiv preprint arXiv:2409.12191 2024.

[5]    Bai, S.;  Chen, K.;  Liu, X.;  Wang, J.;  Ge, W.;  Song, S.;  Dang, K.;  Wang, P.;  Wang, S.; Tang, J., Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923 2025.

[6]    Lee, Y.;  Hwang, J.-w.;  Lee, S.;  Bae, Y.; Park, J. In An energy and GPU-computation efficient backbone network for real-time object detection, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019; pp 0-0.

[7]    Fang, Y.;  Sun, Q.;  Wang, X.;  Huang, T.;  Wang, X.; Cao, Y., Eva-02: A visual representation for neon genesis. Image and Vision Computing 2024, 149, 105171.

[8]   Dosovitskiy, A.;  Beyer, L.;  Kolesnikov, A.;  Weissenborn, D.;  Zhai, X.;  Unterthiner, T.;  Dehghani, M.;  Minderer, M.;  Heigold, G.; Gelly, S., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 2020.

 

VLM的高层语义理解不再是模型隐含的特性,信息的层层传递往往导致决策滞后或次优。实现信息流的统一与优化。代表工作是Transfuser[1]。第三类是基于Scorer的方案,为了超越仅在人类数据采集中观察到的状态下评估驾驶系统,背景与挑战

近年来,例如:

纵向指令:"保持速度"、

B. 质性融合:VLM融合器(VLM Fusioner, VLMF)

图2 VLM融合器的轨迹融合流程
图2 VLM融合器的轨迹融合流程